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1 Introduction 

•  Large scale modeling of Antarctica: 
–  1km resolution on Antarctica -> 20 Million elements in 2d 
–  400 million in 3d (20 vertical layers) 
–  Full stokes: 1.6 billion dofs. (4 per node) 
–  Cost is prohibitive. 

•  Constraints on bedrock friction and ice rheology: 
–  Paleo runs for large scale models are hard to converge to present time. 
–  Paleo runs usually do not account for full stress equilibrium (SIA). 
–  A mix of paleo run and inverse control methods at present time could be 

necessary (similar to GCM spin up).  
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2 Higher order inverse control methods. 

•  Cost function:  

•  We augment J with the ice flow model desired, multiplied by 
adjoint vectors. The model equations depend on the order modeling 
desired:  

•  Macayeal: 
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•  Pattyn: 

•  Second part of misfit is integrated on the volume instead of the 
surface. Macayeal is thickness integrated, Pattyn is 3d. Drag is a 
boundary condition for Pattyn, instead of a surface term for 
MacAyeal. 
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•  Stokes: 

•  Add vertical stress equilibrium + incompressibility equation. 
Observations misfit still integrated over surface layer.  
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•  Misfit gradients with respect to drag coefficient: 

                                                                                    (Paterson, 1994) 
                                          or 
•  Stokes: 

•  Pattyn and MacAyeal: 
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3 Large scale modeing using  
Anisotropic Mesh Adaptation. 

•  If the solution u(x) is approximated by uh(x), with piecewise linear 
interpolation, a local approximation error can be defined over an 
element E to be : 
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Generalized error estimate: 

                                                                        (Habashi 2000) 

where : 
–  hE length of the element edge 
–  Cd constant that depends only on the space dimension (1.8 in 1d, 2.9 in 

2d) 
–  Hf (x; y) Hessian matrix of u, |Hu(x; y)| its spectral norm 

-> use Hessian matrix to minimize the error estimate, by remeshing 
along principal directions of Hessian matrix, according to eigenvalue 
magnitude. 

Tool: YAMS, developed within the GAMMA research project at 
INRIA-Rocquencourt. Anisotropic. Pascal Frey. 
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o  15,000 elements. 
o  15 km initial resolution.  
o  5km final resolution on icestreams. 
o  3 min Yams remeshing. 



In transformed error 
coordinates space (along 
Hessian directions), mesh 
triangles should tend to 
be equilateral (best 
capture of discretization 
error). 

Mesh quality: measure of 
distortion from equilateral 
discretization error. Tends 
to 1 for equilateral 
triangles in error space. 
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4 Ice flow model of Antarctica using ISSM. 

•  ISSM: Ice Sheet System Model, developed by JPL’s R&TD 
program, funded by JPL and NASA (Map09). 

•  Large scale model of Antarctica, using anisotropic remeshing: 
–  150,000 2d elements: MacAyeal formulation. 
–  1,200,000 3d elements (8 extrusion layers, distorted towards bedrock). 
     Pattyn formulation. 
Icestreams resolved at 3km, interior of ice sheet captured at 50km. 

•  Diagnostic run, constrained using inverse control methods on drag: 
–  Background run (40 iterations) to correctly constrain entire ice sheet.  
–  Refinement on all basins (20 basins) to capture icestreams. 
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•  Firn Layer:   van den Broeke, M.R., Towards quantifying the 
contribution of the Antarctic ice sheet to global sea level change. 
Journal of Physics. IV France, 2006 (139) 170-187 

•  Temperatures:   Giovinetto, M.B., N.M. Waters, and C.R. Bentley, 
Dependence of Antarctic surface mass balance on temperature, 
elevation and distance to open ocean, Journal of Geophysycal 
Research, 1990,  95, 3517-3531 

•  Surface:   Bamber, J. L., unpublished 

•  Thickness:   Lythe,M.B., D.G. Vaughan and Consortium BEDMAP, 
BEDMAP: A new ice thickness and subglacial topographic model of 
Antarctica, Journal of Geophysical Research, 2001, 106 (B6), 
11,335-11,352 

•  Grounding Line, Ice Front, Ice Rises:   Rignot unpublished. 

•  Surface velocity map: Rignot, unpublished.  
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Computation stats: 
# elements: 1,200,000 
# vertical layers: 8 
# cpus: 100 
# time to compute basal drag: 
10h. 40 control iterations (~800 
diagnostic runs) 







Computation stats: 
# elements: 1,200,000 
# vertical layers: 8 
# cpus: 100 
# time to compute diagnostic: 5 
minutes. 
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5 Conclusions and perspectives. 

•  Higher order inverse control methods are computationally 
affordable, using adaptative remeshing.  

•  InSAR data becoming available to constrain entire continent.  
•  Spin ups can now combine paleo-runs with inverse control methods 

to constrain Antarctica ice flow.  
•  ISSM capable of fully constraining present day diagnostics. Better 

thermal modeling including advection being currently implemented.  
•  Short term transients should be possible with full resolution 

models. 
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